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ABSTRACT

A finite difference program has been developed which

permits computer simulation of complex flow reaction systems

in packed bed reactors. Reactions of the form A(g) + E(s) -

Pi(g) may be investigated along with side reactions, adsorp--

tion and desorption of reactants and products. Reactant and

product concentrations as functions of time and position are

calculated from given inlet conditions.

Specifically, the oxidation of carbon by an oxygen

stream is studied.
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I . INTRODUCTION

A. Background of the Problem

Because of its importance as a world energy source

the gas-solid reaction, specifically that of the oxidation

of solid carbon, has long been the subject of much investi-

gation and discussion. More recently, advances in catalysis

and the advent of the catalytic reactor for the control of

automotive exhaust emissions have spurred interest in the

study of the gas-solid reactions in packed bed reactors, and

increased the need for more rigorous design of catalytic re-

actors. -

The study of gas-solid reactions in a packed bed is

complicated by the number of phenomena which take place.

Aside from the flow of gases through the bed as well as the

possibility of reactions in the gas phase, there is simultan-

eous mass transfer of each species between the fluid and the

solid along with possible reactions of the adsorbed species

on the solid particles. As a result, even the simplest sys-

tems are often too complex to yield analytical solutions.

For example, consider the case of a single gaseous

reactant A which reacts with a solid B in a packed bed reac-

tor to form n gaseous products P.:

1
A(g) + B(s) ~ Pi (g) i = 1, 2, ..., n

The flow of each gaseous species is described by a second

order partial differential equation which will, in general,
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be nonlinear if there are any reactions in the gas stream

involving the products and/or reactant. Furthermore, for

each gaseous species a first order partial differential

equation is needed to describe the adsorption, desorption

and reactions on the solid surface. The resulting set of

2(n+l) simultaneous partial differential equations will be

coupled through the reaction terms and generally will be too

complex to solve analytically.

B. Statement of the Problem

The primary purpose of this paper is to develop a

general method of solving for the individual species concen-

trations in a packed bed reactor. A finite difference ap-

proach is developed for this purpose. This method permits ad-

sorption, desorption and/or reaction of each species on the

solid surface as well as product-reactant and product-product

reactions in the fluid phase. The secondary objective is to

study the carbon oxidation reaction prior to the initiation

of an experimental program. Accordingly, the parameters which

have the greatest influence on the system can be isolated be-

fore any experimental work is done.

In both instances, it is desired that for any given

set of input parameters the concentration of each species in

the fluid phase can be obtained as a function of time for

various positions in the packed bed. Furthermore, an analy-

sis of the moments of the system is desired because of their

usefulness for modeling important system properties.
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The mathematical model used in this work is basically

the Dispersion Model with additional terms added to account

for mass transfer at the solid surface and gas phase reactions.

Bischoff and Levenspiel (1) have presented a complete review

of this model.

II. MA.THEMATICAL TREATMENT

A. Generalized Fluid Dispersion Model

The system under consideration is a packed bed chemi-

cal reactor through which a mixture of gases of known compo-

sition is flowing. The surface concentration of each gas ad-

sorbed on the solid particles is in dynamic equilibrium with

the gas in the fluid phase. At the inlet of the reactor, a

pulse of known composition is introduced. The gases in the

pulse may be adsorbed, desorbed and/or reacted at the solid

surface. It is also possible that reactions may take place

in the fluid phase.

For a pulse consisting of n gaseous species, assuming

constant dispersion coefficients and no variation in the rad-

ial direction, a material balance for each species taken over

a differential segment of the reactor yields:

,aci 6ci Z)Ci
~2~~C. ~ C. C

D . 1_ + S. + r.0 D. 12 - v. -- v +S.+r. = 0 i = l,...,n (1)
z. x2 1. 1x2~ ~~~~~ 8i

The source/sink term from equation (1) may be ex-

pressed as:

0
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Bw.

S aCL a (2)
Si = 

To solve equations (1) and (2) it is necessary to relate the

rate of adsorption, equation (2) to the gas stream concentra-

tion, C..
1

It has been shoiwn by Chao and Hoelscher (2) that the

rate of adsorption on the solid surface could be related to

the gas stream concentration by:

bw.

-S. - i ~wii8-S. = a do = R. (Ci-ci ) i = 1,...,n (3)
OL~ R. 

In order to relate the equilibrium concentration, Ci , to the

adsorbate concentration at the surface, w i, Chao and Hoelscher

assumed that for low concentrations a linear isotherm could

be used. In addition, if a reaction occurs at the solid sur-

face, equation (3) will have the form:

~w. w.
- S R1 (C

i
B 

)
+ r. i = 1,2,...,n (4)

-SiCL R. B . si
1 1

The problem is now one of solving equations (1) and

(4) for the adsorbed and fluid phase concentrations. To do

this it is necessary to express fluid phase and adsorbed

phase reaction rates in terms of fluid and adsorbed species

concentrations. Hence it is necessary to formulate a reaction

model.

B. The Carbon Oxidation Model

Consider a packed bed chemical reactor whose packing

consists of solid carbon particles. The fluid pulse flowing

through the reactor is made up of oxygen, carbon monoxide and/

or carbon dioxide. The following assumptions are made:
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1) 02, CO, and CO2 are all adsorbed on the surface

of the carbon particles.

2) 02' CO, and CO2 may all be desorbed without un-

dergoing reaction.

3) Possible reactions on the solid surface are

(3), (4);
ads des

a) 02 - (CO
i
) c CO 2 ; r = k (02)

2 c ca

ads des
b) 02 (CO) 4 2C0 ; r = k b (02)

c) 2CO c (C~i) c 0:r=kc(Oads des
2

c) 2 (CO) CO 2 ; r= k (CO)
c 1 c c

ads des
d) Co (CO - 2C0 ; r = kd CO2

2 c i C 2c

4) The only possible reaction in the fluid stream

is: k
1

2C0 + 02 4 2C02 ; r = kl(O2 )(cO)2

5) The rates of reaction on the solid particles are

dependent upon adsorption and desorption.

6) The void fraction, a, is unchanged by the reac-

tion.

The reaction rates may now be expressed in terms of

concentration and rate constant using assumptions (1) to (6).

However, before any solution is attempted the variables in

equations (1) and (4) will be expressed in dimensionless form.

C. Dimensionless Form-n

The set of equations (1) and (4) will be expressed in

dimensionless form by means of suitable substitutions to
O
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facilitate their solution. For convenience define:

a = (02), b = (CO), c = (CO
2
), d = (02), e = (CO),

f = (CO2 ) where ^ indicates the adsorbed species.

Next the following dimensionless variables are introduced:

x
Y~ L~ B =b/bL 0

VL
Pei . C = c/c

Pei - D. 0

t= L D = d/d
L -

A = a/a E = e/e

F = f/f
o

where subscript, o, refers to a reference concentration. Upon

substitution into equations (1) and (4), the following set of

dimensionless partial differential equations result:

2 d ~~~~~~~~2
1 b2A bA 6A do ;D klbo L 2 L

AB 2 = 0
PeA 2 - at Q a tao t Vt

2 e 2k ab L 2
1 2B 3B B eo E 2klao boLAB 0 (5)

PeB ;3y2 Zyat ab at V

2
2- _ _f ~ 2k a b0 LA 2 =01 ac ac ac fo aF 1 -l o0o2

PeCay2 ay t ae t CV AB = 0

and;

a A
V 6D 1D k+)

-Lt RA ( B ) -(ka + kb) D-;Cxy Lt 0 AbO

·~~~

b B fVLE 1 aBE d(D 2-B.) k bB 2keE +2kd °F (6)Vc aF2 =t ) + k ok V E -k
aL ;t R e B +b B co0 d e

B 0 B 0 0

d e ~~~2

CLL = 1C c0 C B af -k 0d

~~~~~~~~~~~and
a0
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The initial conditions are:

A(y, 0) = gl (y) D(y,0) = g4 (y)

B(y,O) - g2 (y) E(y, 0) = g5 (y) (7)

C(y, 0) = g3 (y) F(y, 0) = g6 (y)

where the gi may be zero, constant, or an impressed concentra-

tion gradient through the reactor length. In addition, equa-

tion (5) requires two boundary conditions. These are

A(O,t) = h
l
(t) )

= y=l

B(0,t) = h (t) =0 (8)2 YY) = 0

C(O,t) = h3 (t) (a-) =0
3 .6 y=l

*VUA_ **. i -- …f o- tm Of .0
1

This set of nonlinear coupled partial differential

equations must be solved to obtain the desired concentrations

as functions of dimensionless time and position. Because of

the nonlinearities and the coupling that occurs through the

reaction terms, the authors have been unable to obtain an

analytical solution. It is not possible to use the Laplace

Transform technique described previously (2) because of the

nonlinearities resulting from the reaction terms. For these

reasons, a finite difference method was used.

A detailed derivation of equations (5) and (6) as

well as the initial and boundary conditions may be formed in

reference (5).
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D. Finite Difference Equations

The finite difference method used to solve equations

(5) and (6) is the classical Crank Nicholson method (6). The

resulting finite difference equations are of such length and

complexity that they will not be presented here, however, a

detailed derivation along with the resulting equation set may

be found in reference (5). Computation was done on an IBM

360/50 systnem using Fortran IV, G level.

Briefly, the method of solution involved solving for

all species at each point in the reactor for a given time

step, j, then using these values to calculate concentrations

of each species in the j+l time step. In this manner numeri-

cal integration proceeded from one time step to the next.

CpUt-t-on tim for ths Metho a found to be quite

long due to the limited size of increments which had to be

used to obtain convergence. It has been shown (6) that the

following condition must be satisfied in order that the method

converge:

At 
Ay

Thus, for a Ay of 0.1 it is necessary to choose At < 0.005.

This entails a large number of time steps and hence extremely

large computation times. Because of this limitation, a less

restrictive method of numerical integration such as that pro-

posed by Liu (7) and Saul'yev (8) or by Peaceman and Rachford

(9) may be used in future work. Such a program is now in

development.
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E. Calculation of the Moments

The first, second and third moments of each fluid

phase species are calculated at various points in the vector

bed by the computer program. The second and third moments

are calculated about the first moment using the following

expressions:

ui(y) = t C (yt)/ Ci (y,t) (9)

t t

.si2( t) 2 Ci( y,t ) - ~i2(y)cri (Y) t Ci~~~~~y~~t)/ pi ~~(10)

t t-
~i~~~~~~~~~3.yo (y) =~

t

t t

3

n3(y) = E t
3
Ci(Y t)/ E Ci(Y,t

)
- 3ui(Y)Oi2(y)

t t-

+ 2 i3 (11)Y)

The moments are to be used later in conjunction with

experimental data to help predict the various parameters in

the fluid dispersion model used.

III. COMPUTER RESULTS

A. Concentration Curves

The computer program generated values of concentra-

tion in the fluid and adsorbed phase for each species at

various increments through the length of the reactor. Only

the fluid phase concentrations were calculated because the

difficulty in trying to measure adsorbed concentrations

physically would make the computer values virtually impossible

to check experimentally. Due to the extremely large nun)Der of
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time steps necessary for convergence, computer output was

not taken for every time step, but rather for every tenth

of a residence time.

Two different conditions were examined. The first

of these was the condition where oxygen is totally chemi-

sorbed. That is, oxygen is desorbed from the surface of the

carbon only in the form of CO or CO2 . Typical concentration

curves for these runs are shown in Figure 1. -

The second condition investigated was one in which

oxygen was not all chemisorbed, that is, oxygen could desorb

from the carbon surface without undergoing reaction. Typical

results are given in Figures 2 and 3. Table 1 lists the

parameters used to develop these figures.

Addit-Lo' a. ca'"cul"-tns -'ere made, assuMinn 'bo-th

partial and total chemisorption to test the sensitivity of

the program to changes in the input parameters. These results

will be discussed later.

B. Moment Curves

The first, second and third moment for each active

species in the fluid phase was calculated at each incremental

point in the reactor bed. Although concentration values were

printed only at every tenth of a residence time, concentra-

tions at each time step were used to calculate the moment by

means of equations (9), (10), and (11).



TABLE 1

Summary of Parameters
Used to Develop Figures 2 and

= 156.2

= 142.8

= 113.6

= 1.0 ft.

= 0.45 sec1

= 0.15 sec&

= 0.13 ft3 /mol.sec.

= 1.0 mols/ft3

= 1.0 mois/ft

= 1.0 mols/ft3

= 0.05 ft/sec

1.0 mols/ft2

= 1.0 mols/ft2

= 1.0 mols/ft2

= 1.28 sec

= 1.12 sec

= 1.76 sec

BA

BB

BC

k
1

k
d

= 0.46

= 0.223

= 0.285

= 0.248

= 0.22 ft6/mole2sec

= 0.11 sec
-
1

11

3

PeA

PeB

Pec

L

k
a

kb

k
c

a
0

b
o0

c
o0

v

d

0
e

so

f
0

RA

RB

R c
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Figure 4 shows the moment curves which were calcula-

ted from Figure 1 corresponding to the case where oxygen is

totally chemisorbed. Figure 5 is a similar graph corres-

ponding to the case in which oxygen is partially chemisorbed.

This figure has been calculated from the results shown in

Figure 2.

IV. RESULTS

The results presented in this paper are not to be con-

sidered as absolute values because many of the parameters used

in the solution of the finite difference program are not

known and can only be obtained experimentally. Rather, the

-ur-ose of the results nresented is to indicate the relative

effect of the various parameters on the individual concentra-

tions. Thus the purpose is to indicate which parameters are

the most significant ones and their relative effect on the

system.

The results shown in Figures 1 - 3 are in agreement

with some preliminary experimental findings and they do not

exhibit any unexpected characteristics.

The sensitivity of the system to various parameters

which could be varied physically was studied and the results

are- presented below. The effect of the velocity is shown in

Figures 6, 7, and 8. The effect of the pulse duration is

shown in Figure 9. In addition, the effect of various void



13

fractions was studied, but for the range of void fractions

which are believed to be realized physically, the effect on

the system was not significant. For example, for a variation

in void fraction from between 0.30 to 0.60, the relative

change in any concentration was less than ten to fifteen per-

cent. This last statement was made for the condition of total

chemisorption of 02.

Figure 10 shows the case of no reaction either in the

gas stream or on the solid surface. Equal pulses of each

active species were used. This situation is equivalent to

that treated by Chao (10).

Figure 11 presents the moments which were generated

from the concentration curves shown in Figure 10.

V. DISCUSSION

For the case where oxygen is totally chemisorbed, the

first moments of each species were found to be linear within

a few percent deviation. For those cases in which oxygen is

partially chemisorbed, the deviation from linearity becomes

greater. The greatest deviation from linearity of the first

moment was found to be about 20%. Linearity of the first

moment has been predicted by Chao (10) and by Levenspiel and

Smith (11). However, Chao assumes no reaction and a c input

to obtain his linear expression for the first moments while

Levenspiel and Smith assume a & input and/or infinite
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reactor. Thus any deviation from linearity in the results

presented here might be attributed to the fact that the input

used was not a S function and a reactor of finite length was

studied.

The sensitivity of the moments is of great importance

if the impulse-response technique is to be used in an experi-

mental program. A significant change in at least one of the

moments was noted for each parameter varied with the excep-

tion of the void function. Varying a parameter did not

change each of the moments proportionally as shown in Figures

6, 7, and 8.

No attempt was made to study the effect of temperature,

although it is felt that this will eventually be one of the

most important parameters in the experimental program, because

of its effect on so many of the parameters used in this model.

The effect of temperature is one of the principle objectives

of an experimental program that is currently under investiga-

tion.

In conclusion, a finite difference program has been

developed which in its general form permits the simulation

of complex flow-reaction systems. Furthermore, as a prelim-

inary to an experimental program, a carbon-oxidation reaction

has been simulated and the relative effect of various flow and

reaction parameters on the system has been investigated.



15

ACKNOWLEDGMENT

The authors wish to acknowledge Dr. Harold E. Hoelscher,

Dean of the School of Engineering of the University of Pitts-

burgh, whose previous work provided the basis for this study

and who first suggested this research topic. The financial

assistance provided by the National Science Foundation through

Grant Number GK-2140 and the National Aeronautics and Space

Administration through Grant Number NGL-39-011-002 is appre-

ciated. Finally, the support of the Computer Center of the

University of Pittsburgh is gratefully acknowledged.



16

NOTATION

A a/a , dimensionless concentration of 02 in fluid
phasRe or gaseous reactant concentration per unit
volume of bed

a concentration of °2 in fluid phase per unit volume
of bed

B b/bo, dimensionless concentration of CO in fluid
phase or slope of the adsorption isotherm

b concentration of CO in fluid phase per unit volume
of bed

C c/cO , dimensionless concentration of CO2 in fluid
phase or concentration of gaseous species C per
unit volume of bed

C* equilibrium concentration of species C per unit
volume of bed

c concentration of CO2 in fluid phase per unit volume
of bed

D d/do, dimensionless concentration of O0 in the ad-
sorbed phase or diffusion coefficient, ft2 /sec

d concentration of 02 in adsorbed phase per unit sur-
face area 

E e/e , dimensionless concentration of CO in the ad-
sorbed phase

e concentration of CO in the adsorbed phase per unit
surface area

F .f/fo, dimensionless concentration of CO2 in the ad-
sorbed phase

f concentration of CO2 in the adsorbed phase per unit
surface area

g(y) initial condition

h(t) boundary conditions

k reaction rate coefficients

overall reactor length, ft.L



Pe

R

r

r
s

S

t

Vv

W

x

Yy

Greek

"(y)

22 (y)

3(y)rr (y)

vL/D, Peclet number, dimensionless constant

resistance to mass transfer, sec

reaction rate in gas phase, concentration/unit time

reaction rate on solid surface, concentration/unit
* time

source or sink term, concentration/unit time

VO/L, dimensionless time

intersticial fluid velocity, ft/sec

adsorbed species concentration per unit surface
area

variable of position in the reactor, ft

x/L, dimensionless variable of position in the
reactor .

Letters

void fraction of the bed

dirac function

time, sec

first moment, sec

second moment, sec2

third moment, sec 3

Subscripts

i species i

O reference concentration

a,b,c,d refer to reactions in adsorbed phase

1 fluid phase reaction 

17
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. I Figure 1

Dimensionless concentration vs. dimensionless

length for total chemisorption of O0
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Figure 2

Dimensionless concentration vs. dimensionless

length for partial chemisorption of 02
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Figure 3

Dimensionless concentration vs. residence time

for the case of partial chemisorption of 02
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Figure 4

First, second, and third moments vs. dimensionless

length for total chemisorption of 02
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Figure 5

First, second, and third moments vs. dimensionless

length for partial chemisorption of 02
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Figure 6

First moments vs. dimensionless length

for various flow velocities
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Figure 7

moments vs. dimensionless

for various flow velocities
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Figure 8

Third moments vs. dimensionless

length for various flow velocities
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Figure 9

First moment vs. dimensionless

length for various pulse durations
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Figure 10

Dimensionless concentration vs. residence time

for the case of no chemical reaction
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Figure 11

First, second, and third moments vs. dimensionless

.length for the case of no chemical reaction
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